结构抗冲击爆炸研究室

    吴昊

 教授、硕士/博士生导师 

   一级学科:土木工程

   二级学科:防灾减灾工程及防护工程

   联系地址:上海市四平路1239号同济大学土木工程学院结构防灾减灾工程系

   电子邮件:wuhaocivil@tongji.edu.cn



 


主要研究方向:混凝土材料与结构抗冲击爆炸

(1)高(低)速冲(撞)击效应

(2)重要基础设施(地面建筑、核电厂房、桥梁等)抗冲击爆炸性能评估与设计

(3)高性能防护材料(超高性能混凝土,装甲钢)与结构

(4)结构抗冲击爆炸加固(聚脲、FRP)与设计

欢迎土木工程、冲击动力学、爆炸力学等专业学生报考硕士和博士研究生!欢迎相关专业博士后进站合作研究!

个人简历

1981年10月出生,主要从事混凝土材料与结构抗强动载作用领域的基础理论和工程应用研究工作,GF卓越青年科学基金和国家自然科学优秀青年基金获得者,首批爆炸力学优秀青年学者。主持完成和在研国家自然科学基金5项,工程项目20余项。出版中英文专著5部,译著1部,发表期刊学术论文215篇,第一/通讯作者发表论文SCI收录112篇(Q1论文77篇)。获江苏省优秀博士学位论文,国家科技进步二等奖1项,省部级科技进步一等奖2项,二等奖5项。

主持国家基金项目

[1] 国家自然科学基金青年基金:高性能混凝土XX的试验与理论研究,2011.01-2013.12

[2] 国家自然科学基金面上项目:非对称低速冲击下正常服役RC构件的损伤破坏机理与设计方法,2024.01~2027.12

[3] 国家自然科学基金面上项目:高超声速X对混凝土靶体的毁伤机理及工程防护研究,2014.01.01~2017.12.31

[4] 国家自然科学优秀青年基金项目:防灾减灾工程及防护工程,2016.01.01~2018.12.31

[5] 国家自然科学基金面上项目:XX核电站屏蔽及附属厂房的损伤破坏与振动响应研究,2019.01-2022.12

[6] 国家自然科学基金面上项目:XX作用喷涂聚脲加固砌体墙的损伤破坏机理与设计方法,2021.1.1~2024.12.31

[7] 国家自然科学基金重点项目课题“生态纳米超高性能混凝土制备与应用基础”,2015.01.01~2019.12.30

主持工程项目

[1] XX喷涂聚脲XX加固设计计算方法与工程应用,500万,2020.11~2025.11

[2] 复合结构XXXX研究,975万,2021.10.21~2021.12.31

[3] 大型复合结构XXXX研究,720万,2020.02.21~2020.12.31

[4] 典型建筑XX分析,200万,2022.12~2023.10

[5] 核设施结构在XX作用下的试验及数值模拟研究,92.6万,2022.12~2023.10

[6] 某新型冲击体XX研究,150万,2020.08.10~2021.06.01

[7] 强弱组合XX研究,150万,2020.08.31~2021.12.31

[8] XX对水下混凝土结构XX研究,145万,2020.09.01 ~2022.09.01

[9] 典型建筑构件平面波XX115万,2020.12.20~2021.03.31

[10] 典型建筑目标XX等效研究,57万,2017.11.30~2019.07.31

[11] 水泥混凝土基防护材料与轻质结构,120万,2018.11~2020.12

[12] 华龙一号飞机XX振动试验研究,248万,2018.06~2019.12

[13] XX荷载作用下结构设计方法研究,59.25万,2020.09 ~2021.12

[14] 重复XX作用下地下结构振动破坏研究,69.1万,2021.04.30~2021.12.31

[15] 超高强防护钢高速动态性能研究,65万,2021.07-2022.12

专(译)著

   [1] Q Fang, H WuConcrete structures under projectile impact. Jointly published by Springer Press (ISBN 978-981-10-3619-4) and Science Press (ISBN 978-7-03-051687-9), 2017

   [2] Wu H, Peng Y, Kong X Z. Notes on Projectile Impact Analyses. Springer Press, ISBN 978-981-13-3253-1, 2019

   [3] Fang Q, Wu H, Kong X Z. UHPCC under impact and blast. Jointly published by Springer Press (ISBN 978-981-336-841-5) and Science Press (ISBN 978-7-03-067698-6),  2021

  [4] Williamson等著,方秦,吴昊. 高速公路桥梁抗爆设计与构造指南, 北京, 科学出版社, 2021, ISBN978-7-03-067788-4. 

   [5] 方秦, 吴昊, . 飞机撞击下核电厂房的安全评估. 北京, 机械工业出版社, 2022.03. ISBN: 978-7-111-70355-6

   [6] 方秦, 吴昊. 民用工程结构抗冲击爆炸—建模与分析. 北京, 科学出版社, 2023.03. ISBN 978-7-03-075084-6


代表性SCI论文

[1] H Wu*, Q Fang, Y Peng, Z M Gong, X Z Kong. Hard projectile perforation on the monolithic and segmented RC panels with a rear steel liner. International Journal of Impact Engineering. 2015, 76: 232-250 (Q1)

[2] H Wu*, Q Fang, Z M Gong, Y Peng. Hard projectile impact on layered SFRHSC composite target. International Journal of Impact Engineering. 2015, 84: 88-95 (Q1)

[3] H Wu*, Q Fang, J Gong, J Z Liu, J H Zhang, Z M Gong. Projectile impact resistance of corundum aggregated UHP-SFRC. International Journal of Impact Engineering. 2015, 84: 38-53 (Q1)

[4] H Wu, X W Chen*, L L He, Q Fang. Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target Part I: Engineering model for the mass loss and nose-blunting of the ogive-nosed projectile. Acta Mechanica Sinica. 2014, 30(6): 933-942 (Q3)

[5] H Wu, X W Chen*, Q Fang, L L He. Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target Part II: Structural stability analyses. Acta Mechanica Sinica. 2014, 30(6): 943-955 (Q3)

[6] H Wu, X W Chen*, Q Fang, X Z Kong, L L He. Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target Part III: Terminal ballistic trajectory analyses. Acta Mechanica Sinica. 2015, 31(4): 558-569 (Q3)

[7] H Wu*, Q Fang, Y D Zhang, Z M Gong. Semi-theoretical analyses of the concrete plate perforated by a rigid projectile. Acta Mechanica Sinica. 2012, 28(6):1630-1643 (Q3)

[8] H Wu*, Q Fang, X W Chen, Z M Gong, J Z Liu. Projectile penetration of ultra-high performance cement based composites at 510m/s to 1320m/s. Construction and Building Materials. 2015, 74: 188-200 (Q1)

[9] Wu Hao*, Fang Qin, Lu Yusheng, Zhang Yadong, Liu Jinchun. Model tests on Anomalous Low Friction and Pendulum-type Wave phenomena. Progress in Natural Science. 2009, 19(12): 1805-1820 

[10] Wu Hao*, Guo Zhikun, Fang Qin, Zhang Yadong. Mechanism of zonal disintegration phenomenon in the enclosing rock mass around a deep tunnel. Journal of Central South University of Technology. 2009, 16(2): 303-311 

[11] Xiao Y K, Wu H*, Fang Q, Zhang W, Kong X Z. Hemispherical nosed steel projectile high-speed penetration into aluminum target. Materials and Design, 2017, 133: 237-254 (Q1)

[12] Y Peng, H Wu*, Q Fang, Z M Gong, X Z Kong. A note on the deep penetration and perforation of hard projectiles into thick targets. International Journal of Impact Engineering. 2015, 85, 37-44 (Q1)

[13] T Zhang, H Wu*, Q Fang, Z M Gong. Influences of nuclear containment radius on the aircraft impact force based on the Riera function. Nuclear Engineering and Design. 2015, 293: 196-204 (Q2)

[14] Y Peng, H Wu*, Q Fang, J Z Liu, Z M Gong. Impact resistance of basalt aggregated UHP-SFRC/fabric composite panel against small caliber arm. International Journal of Impact Engineering. 2016, 88, 201-213 (Q1))

[15] Y Peng, H Wu*, Q Fang, J Z Liu, Z M Gong. Flat nosed projectile penetrating into UHP-SFRC target: experiment and analysis. International Journal of Impact Engineering. 2016, 93: 88-98 (Q1)

[16] G M Ren, H Wu*, Q Fang, J Z Liu, Z M Gong. Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses. Construction and Building Materials. 2016, 113: 1-14 (Q1)

[17] Y Peng, H Wu*, Q Fang, J Z Liu, Z M Gong. Residual velocities of projectiles after normally perforating the thin ultra-high performance steel fiber reinforced concrete slabs. International Journal of Impact Engineering. 2016, 97: 1-9 (Q1)

[18] X Z Kong, H Wu*, Q Fang, G M Ren. Analyses of rigid projectile penetration into UHPCC target based on an improved dynamic cavity expansion model. Construction and Building Materials. 2016, 126: 759-767 (Q1)

[19] X Z Kong, H Wu*, Q Fang, Y Peng. Rigid and eroding projectile penetration into concrete targets based on an extended dynamic cavity expansion model. International Journal of Impact Engineering. 2017, 100: 13-22 (Q1)

[20] X Z Kong, H Wu*, Q Fang, W Zhang, Y K Xiao. Projectile penetration into mortar targets with a broad range of striking velocities: test and analyses. International Journal of Impact Engineering, 2017, 106: 18-29 (Q1)

[21] X Z Kong, H Wu*, Q Fang, Y Peng. Response to Comment on Rigid and eroding projectile penetration into concrete targets based on an extended cavity expansion model by Kong et al. Int. J. Impact Eng. 2017 by Z. Rosenberg et al. International Journal of Impact Engineering, 2017, 104: 150-153 (Q1)

[22] T Zhang, H Wu*, Q Fang, T Huang. Numerical simulations of nuclear power plant containment subjected to aircraft impact.Nuclear Engineering and Design. 2017, 320: 207-221 (Q2)

[23] T Zhang, H Wu*, Q Fang, T Huang. UHP-SFRC panels subjected to aircraft engine impact: experiment and numerical simulation. International Journal of Impact Engineering. 2017, 109: 276-292 (Q1)

[24] F Hu, H Wu*, Q Fang, J C Liu, B Liang, X Z Kong. Impact performance of explosively formed projectile (EFP) into concrete targets. International Journal of Impact Engineering, 2017, 109: 150-166 (Q1)

[25] X Z Kong, Q Fang*, H Wu, Y Peng. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model. International Journal of Impact Engineering. 2016, 95: 61-71 (Q1)

[26] X Z Kong, Q Fang*, Q M Li*, H Wu, John Crawford. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact, International Journal of Impact Engineering, 2017, 108: 217-228 (Q1)

[27] Xiao Y K, Wu H*, Fang Q. Comment on: “On the penetration of high strength steel rods into semi-infinite aluminum alloy targets” by Lu and Wen (Int J Impact Eng 2018; 111: 1-10). International Journal of Impact Engineering. 2018, 114: 194-198 (Q1)

[28] Reng G M, Wu H*, Fang Q, Liu J Z. Effects of steel fiber content and type on dynamic compressive mechanical properties of UHPCC. Construction and Building Materials. 2018, 164: 29-43 (Q1)

[29] Reng G M, Wu H*, Fang Q, Liu J Z. Effects of steel fiber content and type on static mechanical properties of UHPCC. Construction and Building Materials. 2018, 163: 826-839 (Q1)

[30] Wang Z G, Sun Y Y, Wu H*, Zhang C W. Low velocity impact resistance of bio-inspired building ceramic composites with nacre-like structure. Construction and Building Materials. 2018, 163: 826-839 ((Q1)

[31] Wu H*, Reng G M, Fang Q, Liu J Z. Effects of steel fiber content and type on dynamic tensile mechanical properties of UHPCC. Construction and Building Materials. 2018, 173: 251-261 (Q1)

[32] Peng Y, Wu H*, Fang Q, Gong Z M. Deceleration time of projectile penetration/perforation into a concrete target: experiment and discussions. Advances in Structural Engineering. 2018 (4) :136943321877923 (Q3)

[33] Zhang T, Wu H*, Huang T, Sheng J H, Fang Q, Zhang F J. Penetration depth of RC panels subjected to the impact of aircraft engine missiles. Nuclear Engineering and Design. 2018, 335: 44-53 (Q2)

[34] Kong X Z, Fang Q*, Chen L, Wu H. A new material model for concrete subjected to intense dynamic loadings. International Journal of Impact Engineering. 2018, 120: 60-78 (Q1)

[35] Peng Y, Wu H*, Fang Q, Gong Z M. Geometrical scaling effect for penetration depth of hard projectiles into concrete targets.International Journal of Impact Engineering, 2018, 120: 46-59 (Q1)

[36] F Hu, H Wu*, Q Fang, J C Liu. Impact resistance of concrete targets pre-damaged by explosively formed projectile (EFP) against rigid projectile.International Journal of Impact Engineering, 2018, 122: 251-264 (Q1)

[37] Xiangzhen Kong, Qin Fang*, Li Chen*, Hao Wu. Nonlocal formulation of the modified K&C model to resolve mesh-size dependency of concrete structures subjected to intense dynamic loadings. International Journal of Impact Engineering, 2018, 122: 318-332 (Q1)

[38] Peng Y, Wu H*, Fang Q, Kong X Z. A modified spherical cavity-expansion model for projectile penetration into concrete targets. Acta Mecahnica Sinica, 2018 DOI: 10.1007/s10409-018-0815-7 (Q3)

[39] Q Peng, H Wu*, D W Wang, Y J He, H Chen. Numerical simulation of aircraft crash on large-scale LNG storage tank. Engineering Failure Analyses, 2019, 96: 60-79 (Q2)

[40] H Wu*, Y C Li, Q Fang, Y Peng. Scaling effect of rigid projectile penetration into concrete target: 3D mesoscopic analyses. Construction and Building Materials. 2019, 208: 506-524 (Q1)

[41] H Wu*, F Hu, Q Fang. A comparative study for the impact performance of shaped charge JET on UHPC targets. Defence Technology. 2019, 15(4): 506-518 (Q2)

[42] H Wu*, G M Ren, Q Fang, J Z Liu. Response of ultra-high performance cementitious composites filled steel tube (UHPCC-FST) subjected to low-velocity impact. Thin-walled Structures. 2019, 144: 106341 (Q1)

[43] J J Tang, H Wu*, S T Ke, Q Fang. Numerical simulations of a large-scale cooling tower against the impact of commercial aircrafts. Thin-walled Structures. 2019, 144: 106367 (Q1)

[44] Chen L*, Wu H, Liu T. Shear Performance Evaluation of Reinforced Concrete Piers Subjected to Vehicle Collision. ASCE's Journal of Structural Engineering, 2020, 146(4): 04020026 (Q2)

[45] Y X Zhai, H Wu*, Q Fang. Interface defeat studies of long-rod projectile impacting on ceramic targets. Defence Technology. 2020, 16: 50-68  (Q2)

[46] Z G Wang, H Wu*, Q Fang, J Wu. Experimental study on the residual axial capacity of Ultra high performance cementitious composite filled steel tube (UHPCC-FST) column under contact explosion. Thin-walled Structures. 2020, 147: 106515 (Q1)

[47] X Liu, H Wu*, Y G Qu, Z Y Xu, J H Sheng, Q Fang. Safety assessment of Generation Ⅲ nuclear power plant buildings subjected to commercial aircraft crash Part I: FE model establishment and validations. Nuclear Engineering and Technology. 2020, 52(2): 231-396 (Q1)

[48] Y G Qu, H Wu*, Z Y Xu, X Liu, Z F Dong, Q Fang. Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part II: structural damage and vibrations. Nuclear Engineering and Technology. 2020, 52(2): 397-416 (Q1)

[49] Z Y Xu, H Wu*, X Liu, Y G Qu, Z C Li, Q Fang. Safety assessment of Generation Ⅲ nuclear power plant buildings subjected to commercial aircraft crash Part III: engine missile impacting SC plate. Nuclear Engineering and Technology. 2020, 52(2): 417-428 (Q1)

[50] R W Li, D Y Zhou, H Wu*. Experimental and numerical study on impact resistance of RC bridge piers under lateral impact loading. Engineering Failure Analysis. 2020, 109: 104319 (Q2)

[51] H Wu*, Y L Peng, Q Fang. Experimental and numerical study of ultra-high performance cementitious composites filled steel tube (UHPCC-FST) subjected to close-range explosion. International Journal of Impact Engineering, 2020, 141: 103569 (Q1)

[52]Z G Wang, H Wu*, Q Fang, J Wu. Numerical study on the residual axial capacity of Ultra high performance cementitious composite filled steel tube (UHPCC-FST) column under contact explosion. Thin-walled Structures. 2020, 106832 (Q1)

[53] Z G Wang, H Wu*, J Wu, Q Fang. Experimental study on the residual seismic resistance of Ultra high performance cementitious composite filled steel tube (UHPCC-FST) after contact explosion. Thin-walled Structures. 2020, 154: 106852 (Q1)

[54] R W Li, H Wu*, Q T Yang, D F Wang. Vehicular impact resistance of seismic designed RC bridge piers. Engineering Structures, 2020, 220: 111015 (Q1)

[55] Lin Chen*, Hao Wu, Tao Liu. Vehicle Collision with Bridge Piers: A State-of-the-Art Review. Advances in Structural Engineering, 2020 (Q3)

[56] D L Zou, J G Sun, H Wu*, Y F Hao, Z Wang, L F Cui. Experimental and numerical studies on the impact resistance of large-scale Liquefied Natural Gas (LNG) storage outer tank against the accidental missile. Thin-walled Structures. 2020,107189 (Q1)

[57] Su Q, Wu H*, Sun H S, Fang Q. Experimental and numerical studies on dynamic behavior of reinforced UHPC panel under medium-range explosions. International Journal of Impact Engineering, 2020, 148: 103761 (Q1)

[58] K Heng, R W Li, Z R Li, H Wu*. Dynamic responses of highway bridge subjected to heavy truck impact. Engineering Structures, 2021, 232: 111828 (Q1)

[59] P C Jia, H Wu*, R Wang, Q Fang. Dynamic responses of reinforced ultra-high performance concrete members under low-velocity lateral impact. International Journal of Impact Engineering, 2021, 150: 103818 (Q1)

[60] Z C Li, Y H Yang, Z F Dong, T Huang, H Wu*. Safety assessment of nuclear fuel reprocessing plant under the free drop impact of spent fuel cask and fuel assembly Part I: Large-scale model test and finite element model validation. Nuclear Engineering and Technology. 2021, 53: 2682-2695 (Q1)

[61] Z R Li, Z C Li, Z F Dong, T Huang, Y G Lu, J L Rong, H Wu*. Damage and vibrations of nuclear power plant buildings subjected to aircraft crash Part I: model test. Nuclear Engineering and Technology. 2021, 53: 3068-3084 (Q1)

[62] Z R Li, Z C Li, Z F Dong, T Huang, Y G Lu, J L Rong, H Wu*. Damage and vibrations of nuclear power plant buildings subjected to aircraft crash Part II: numerical simulations. Nuclear Engineering and Technology. 2021, 53: 3085-3099 (Q1)

[63] Q Peng, H Wu*, R F Zhang, Q Fang. Numerical simulations of base-isolated LNG storage tanks subjected to large commercial aircraft crash. Thin-walled Structures. 2021, 163: 107660 (Q1)

[64]Yang S B, Kong X Z*, Wu H*, Fang Q, Xiang H B. Constitutive model of UHPCC under impact and blast loadings. International Journal of Impact Engineering, 2021, 153: 103860 (Q1)

[65] Z G Wang, H Wu*, Y Y Sun. Experimental study on residual seismic behavior of UHPCC-FST after near-range explosion. Structures, 2021, 32: 1428-1443 (Q2)

[66] Lin Chen, Hao Wu*, Qin Fang, Ruiwen Li. Full-scale experimental study of a reinforced concrete bridge pier under truck collision. ASCE Journal of Bridge Engineering, 2021, 26(8): 05021008 (Q2)

[67] Y X Zhai, H Wu*, Q Fang. Impact resistance of armor steel/ceramic/UHPC layered composite targets against 30CrMnSiNi2A steel projectiles. International Journal of Impact Engineering, 2021, 154: 103888 (Q1)

[68] Ma L L, Wu H*, Fang Q. Damage mode and dynamic response of RC girder bridge under explosions. Engineering Structures, 2021, 243:112676 (Q1)

[69] R W Li, D S Cao, H Wu*, D F Wang*. Collapse analysis and damage evaluation of typical simply supported double-pier RC bridge under truck collision. Structures, 2021, 33: 3222-3238 (Q2)

[70] R W Li, H Wu*, Q Fang, D F Wang. Performance-based design of double-pier RC bridge subjected to vehicle collision. Structures, 2021, 34: 3141-3154 (Q2)

[71] Y H Yang, W Y Dai, T Huang, H Wu*. Numerical simulations of nuclear fuel reprocessing plant subjected to the free drop impact of spent fuel cask and fuel assembly. Nuclear Engineering and Design, 2021, 385: 111524 (Q2)

[72] Peng Q, Zhou D Y*, Wu H*, Ma L L, Q Fang. Experimental and numerical studies on dynamic behaviors of RC slabs under long-duration near-planar explosion loadings. International Journal of Impact Engineering, 2022, 160: 104085 (Q1)

[73] Heng K, Jia P C, Xu J P, Li R W, Wu H*. Vehicular impact resistance of highway bridge with seismically-designed UHPC pier. Engineering Structures, 2022, 252: 113635 (Q1)

[74] Heng K, Li R W, Wu H*. Damage assessment of simply-supported double-pier bent bridge under heavy truck collision. ASCE Journal of Bridge Engineering, 2022, 27(5): 04022021 (Q2)

[75] Su Q, Wu H*, Fang Q. Behavior of Ultra-high performance concrete members under impact and blast loadings. Cement and Concrete Composites. 2022, 127: 104401 (Q1)

[76] Chen D, Wu H*, Wei J S, Xu S L, Fang Q. Nonlinear visco-hyperelastic tensile constitutive model of spray polyurea within wide strain-rate range. International Journal of Impact Engineering. 2022,163: 104184 (Q1)

[77] Zou D L, Hao Y F, Wu H*, et al. Safety assessment of large-scale all steel LNG storage tanks under wind-borne missile impact. Thin-walled Structures. 2022, 174: 109078 (Q1)

[78] Li W, Zhang NWu H*. Vehicular impact resistance of FRP-strengthened RC bridge pier. ASCE Journal of Bridge Engineering, 2022, 27(8): 04022062 (Q2)

[79] Chen D, Wu H*, Fang Q, et al. A nonlinear visco-hyperelastic model for spray polyurea and applications. International Journal of Impact Engineering2022, 167: 104265 (Q1)

[80] Li Z C, Jia P C*, Jia J Y, Wu H*, Ma L L. Impact-resistant design of RC slabs in nuclear power plant buildings. Nuclear Engineering and Technology, 2022 (Q1)

[81] Xu J P, Wu H*, Ma L L, Fang Q. Residual axial capacity of seismically designed RC bridge pier after near-range explosion of vehicle bombs. Engineering Structures, 2022, 265: 114487 (Q1)

[82] Cheng Y H, Wu H*, Zhou F, Fang Q. Resistance of composite target against combined effects of large caliber projectile penetration and successive charge explosion. International Journal of Impact Engineering, 2022, 168: 104288 (Q1)

[83] Chen T L, Wu H*, Fang Q. Impact force models for bridge under barge collisions. Ocean Engineering, 2022, 259: 11856 (Q1)

[84] R W Li, N Zhang, H Wu*. Effectiveness of CFRP shear-strengthening on vehicular impact resistance of double-column RC bridge piers.  Engineering Structures, 2022, 266: 114604 (Q1)

[85] Ma L L, Wu H*, Fang Q, Xu J P. Displacement-based blast-resistant evaluation for simply-supported RC girder bridge under below-deck explosions. Engineering Structures, 2022, 266: 114637 (Q1)

[86] Lu J X, Wu H*, Fang Q. Progressive collapse of Murrah Federal Building: revisited. Journal of Building Engineering, 2022, 57: 104939 (Q1)

[87] Jia P C, Wu H*. Feasibility of UHPC shields in spent fuel vertical concrete cask to resist accidental drop impact. Nuclear Engineering and Technology, 2022 (Q1)

[88] Chen L, Fang L, Fan W, Liu T, Wu H*. Field test and numerical simulation of a full-scale RC pier under multiple lateral impacts. Engineering Structures, 2022, 268: 114747 (Q1)

[89] Cheng Y H, Wu H*, Zhang R G, Zhou F. Mechanical characteristics and ballistic behaviors of high strength and hardness armor steels. Journal of Constructional Steel Research, 2022, 197: 107502 (Q2)

[90] Chen T L, Wu H*, Fang Q. Dynamic behaviors of double-column RC bridge subjected to barge impact.Ocean Engineering, 2022, 264: 112444 (Q1)

[91] Zhou F, Wu H*, Cheng Y H. Perforation studies of concrete panel under high velocity projectile impact based on an improved dynamic constitutive model. Defence Technology, 2022 (Q2)

[92] Li Z R, Wu H*, et al. An aircraft accident reconstruction by numerical simulation method and investigations of impact force. Engineering Failure Analysis. 2022, 142: 106815 (Q2)

[93] Chen G Q, Lu J X, Wu H*. Dynamic behavior and retrofitting of RC frame building under vehicular bomb explosion. Engineering Failure Analysis, 2022, 106925 (Q2)

[94] Y Zhang, Y D Zhou*, H Wu*. Influence of water level on RC caisson subjected to underwater explosions. Ocean Engineering, 2022, 266: 113162 (Q1)

[95] Peng Q, Wu H*, Jia P C, Ma L L. Dynamic behavior of UHPC member under lateral low-velocity impact: mesoscale analysis. International Journal of Impact Engineering, 2023, 172: 104418 (Q1)

[96] Peng Q, Wu H*, Ma L L, Jia P C. Numerical studies on rebar-concrete interactions of RC members under impact and explosion. Structures, 2023, 47: 63-80 (Q2)

[97] Cheng Y H, Wu H*, Jiang P F, Fang Q. Ballistic resistance of high-strength armor steel against ogive-nosed projectile impact. Thin-Walled Structures, 2023, 183: 110350 (Q1)

[98] Ma L L, Wu H*, Fang Q. A unified performance-based blast-resistant design approach for RC beams/columns. International Journal of Impact Engineering, 2023, 173: 104459 (Q1)

[99] Jia P C, Wu H*, Fang Q. An improved 2DOF model for dynamic behaviors of RC members under lateral low-velocity impact. International Journal of Impact Engineering, 2023, 173: 104460 (Q1)

[100] Zhou F, Su Q, Cheng Y H, Jia P C, Wu H*. Novel constitutive model of UHPC under impact and blast loadings considering compaction of shear dilation. International Journal of Impact Engineering, 2023, 173: 104468 (Q1)

[101] Su Q, Wu H*, Poh L H, et al. Dynamic behavior of UHPC-FST under close-in explosions with large charge weight. Engineering Structures, 2023, 277: 115475 (Q1)

[102] P C Jia, H Wu*, Q Fang, Q Peng, L L Ma. TDOF model for UHPC members under lateral low-velocity impact. International Journal of Impact Engineering, 2023, 174: 104520  (Q1)

[103] Zhou F, Su Q, Cheng Y H, Wu H*. A novel dynamic constitutive model for UHPC under projectile impact. Engineering Structures, 2023, 280: 115711(Q1)

[104] Chen D, Wu H*,  Fang Q. Simplified micro-model for brick masonry walls under out-of-plane quasi-static and blast loadings. International Journal of Impact Engineering, 2023, 174: 104529 (Q1)

[105] Chen D, Wu H*, Fang Q, Wei J S, Xu S L. Out-of-plane behaviors of unreinforced and spray polyurea retrofitted one-way masonry infilled walls. Journal of Building Engineering, 2023, 67: 106006 (Q1)

[106] Xu J, Wu H*, Ma L, Fang Q. Experimental and numerical study on the residual axial capacity of RC bridge piers after contact explosion. ASCE Journal of Bridge Engineering. 2023. (Q2)

[107] Heng K, Li R W, Chen T L, Wu H*. Dynamic Behaviors and Equivalent Static Force of Double-Column Pier Under Horizontal Impact. Structures, 2023, 49: 1093-1111(Q2)

[108] Lu J X, Wu H*, Chen D. Evaluation of collapse resistance of masonry-infilled RC frame building under blast loadings. Structures, 2023. (Q2)

[109] Zhao X, Yu X Y, Cai L, Peng Q, Wu H*, Zhou F. The effects of tensile strain rate on the dynamic tensile behavior of ultra high toughness cementitious composite. Journal of Building Engineering, 2023. (Q1)

[110] Zhou F, Wu H*. A novel three-dimensional modified Griffith failure criterion for concrete. Engineering Fracture Mechanics 2023, 284: 109287 (Q1)

[111] Li R W, Zhang X X, Wu H*. Influence of stirrup ratio on vehicular impact resistance of double-column RC bridge piers. Engineering Structures, 2023, 289: 116309 (Q1)

[112] Zhang N, Li R W*, Wu H*. Assessment on concrete constitutive models for numerical simulations of vehicular collisions with RC bridge piers. Structures, 2023, 53: 1582-1599 (Q2)

[113] Zhou F, Cheng Y H, Peng Q, Wu H*. Influence of steel reinforcement on the performance of an RC structure subjected to a high-velocity large-caliber projectile. Structures, 2023, 54: 716-731 (Q2)

[114] Ma L L, Wu H*, Fang Q. Blast-resistant design approach for RC bridge piers. International Journal of Impact Engineering, 2023, 180: 104685 (Q1)

[115] Ma L L, Wu H*, Fang Q. Performance-based blast-resistant design of RC bridge piers under vehicular bombs. Engineering Structures. 2023, 291: 116492(Q1)

[116] Zhao X, Zheng L, Liu J T, Cai L, Wu H*. Effect of moisture content on mechanical behavior of Ultra-high toughness cementitious composites. Journal of Building Engineering, 2023, 76: 107099 (Q1)

[117] Zhao X, Zhou F, Wang W S, Kong D Y, Liu J T*, Wu H*. Dynamic compressive behavior of polyethylene fiber reinforced high strength and high ductility concrete over wide ranges of strain rate. Journal of Building Engineering, 2023, 80: 107953 (Q1)


代表性EI论文

[1] Y K Xiao, H Wu*, Q Fang, X Z Kong. A rigid projectile perforation model for metallic targets with the free-surface and fracture effects. International Journal of Protective Structures. 2017, 8(1): 109-124

[2] F Hu, H Wu*, Q Fang, J C Liu. Numerical simulations of shaped charge jet penetration into concrete-like targets. International Journal of Protective Structures. 2017, 8(1): 237-259 

[3] G M Ren, H Wu*, Q Fang, X Z Kong. Parameters of Holmquist-Johnson-Cook model for high-strength concrete-like materials under projectile impact. International Journal of Protective Structures2017, 8(3): 352-367

[4] Li Y C, H Wu*, Fang Q, Peng Y. A note on the impact resistance of concrete target against rigid projectile. International Journal of Protective Structures, 2018, 9(3): 397-411

[5] Zhang T, Wu H*, F J Zhang, Fang Q. Ballistic limit of aircraft engine missile impact on ultra-high-performance steel-fiber-reinforced concrete panels. International Journal of Protective Structures. 2017, 8(4): 503-523

[6] Chen L W, H Wu*, Fang Q. Numerical analysis of collision between a tractor-trailer and bridge pier. International Journal of Protective Structures, 2018, 9(4): 484-503

[7] 程月华, 吴昊*, . 高速3D-DIC测试技术在装甲钢贯穿实验中的应用爆炸与冲击2022, 42(10): 111-125

[8] 胡志乐, 马亮亮, 吴昊*, 方秦. 远距离近地面爆炸空气冲击波计算的网格尺寸优化与验证爆炸与冲击, 2022, 42(11):  118-132

[9] 程月华吴昊*,装甲钢/UHPC复合靶体抗侵彻性能试验与数值模拟研究爆炸与冲击, 2022, 42(5): 053302 

[10] 程月华姜鹏飞吴昊*,等考虑尺寸效应的典型侵彻混凝土深度分析爆炸与冲击, 2022, 42(6): 063302

[11] 程月华, 周飞, 吴昊*. 战斗部侵彻爆炸作用下混凝土遮弹层设计. 爆炸与冲击2023, 43(4): 045101

[12] 张湘茹程月华吴昊*. 基于3D细观模型的混凝土动态压缩行为分析. 爆炸与冲击, 2023

[13] 彭琦, 吴昊*, 方秦, 等. 长持时平面爆炸波作用下RC梁动力响应的试验和数值模拟研究, 建筑结构学报, 2023, 44(3): 87-101

[14] 陈德, 吴昊*, 方秦. 爆炸荷载作用下单向砌体填充墙动态响应计算方法. 建筑结构学报, 2023,43(08):136-154.

[15] 吕晋贤, 吴昊*, 方秦. 爆炸作用下高层框架结构倒塌分析与设计建议. 建筑结构学报, 2022

[16] 章毅, 张湘茹, 吴昊*. 混凝土3D细观模型及准静态力学行为分析. 工程力学, 2022

[17] 徐佳沛, 苏琼, 吴昊*. 近场爆炸下UHPC-FST墩柱的抗爆性能分析. 工程力学, 2022

[18] 芦思羽, 陈德, 吴昊*. FRP-混凝土界面动态剪切滑移模型. 工程力学,  2023

[19] 尹泽豪, 贾鹏程, 吴昊*. 低速冲击下RC梁的冲切破坏判据. 建筑结构学报, 2023

[20] 陈德, 吴昊*, 徐世林, 韦建树. 单向砌体填充墙激波管试验和动力行为分析. 爆炸与冲击, 2023, 43(8): 136-154.

[21] 陈天黎, 吴昊*, 方秦. 驳船撞击作用下双柱式桥梁的动力行为分析. 振动与冲击, 2023

[22]吴昊, 肖方胜, 李瑞文. 落石撞击下双柱式 RC 梁桥的倒塌破坏分析[J/OL]. 中国公路学报. https://link.cnki.net/urlid/61.1313.U.20230904.1515.006

[23] 吴昊, 芦思羽, 陈德*. 基于混凝土3D细观模型的FRP-混凝土黏结界面动态剪切行为研究. 工程力学, 2023

[24] 彭玉林, 吴昊*, 方秦. 爆炸荷载在圆截面桥梁墩柱上的分布规律研究. 爆炸与冲击. 2019, 39(12): 122201 

[25] 方秦*, 吴昊, 张涛. 核电站在大型商用客机××下的损伤破坏研究进展. 建筑结构学报, 2019, 40(5): 1-27 

[26] 贾鹏程吴昊*方秦基于CSC模型的UHPC构件侧向低速冲击分析建筑结构学报2021, 42(8): 169-182

[27] 杨燕红, 吴昊*. 飞机撞击下核岛厂房损伤破坏与振动响应的数值仿真分析. 振动与冲击, 2022

[28] 陈公轻, 吴昊*, 吕晋贤等. 爆炸荷载作用下砌体填充墙对RC框架结构损伤破坏的影响. 振动与冲击, 2023

[29] 张坤玉, 陈德, 吴昊*. 高压气体驱动激波管数值仿真与参数影响分析. 高压物理学报, 2023

[30] 肖云凯, 吴昊*, 方秦. 长杆×高速冲击金属靶体实验和模型分析. 兵工学报, 2017, 38(s1): 15-23 

[31] 胡嘉辉吴昊*方秦近区爆炸荷载作用下砌体填充墙损伤破坏与动态响应的数值模拟振动与冲击, 2020, 40(9): 1-10 

[32] 翟阳修 吴昊*,  方秦基于A-T模型的长杆弹超高速侵彻陶瓷靶体强度分析振动与冲击.2017, 36(3): 183-188

[33] 宫俊,  吴昊*,  方秦刚玉骨料超高性能水泥基材料抗侵彻试验和细观数值模拟振动与冲击. 2017, 36(1) 55-63











联系地址:上海市四平路1239号同济大学土木大楼B座  电话:021-65982666   传真:021-65982668  邮箱:ddms@tongji.edu.cn   邮编:200092

Copyright © 2018 同济大学土木工程学院结构防灾减灾工程系